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Abstract: A two step procedure is reported for the efficient C-methylation of phenolic compounds using a
Stille reaction. This procedure requires no phenol protection and is tolerant to a wide variety of functional

groups. © 1999 Elsevier Science Ltd. All rights reserved.
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Methods that allow easy and general access to C-methylated phenols are of interest due to the
prominence of these derivatives in various natural products [1] and pharmaceuticals [2].
Ongoing investigations of quinone methides for various bioalkylating processes in our
laboratories called for an efficient means for the C-methylation of numerous phenols [3]. We
report a two step procedure that allows the efficient synthesis of ortho and para methylated
phenol derivatives. This procedure requires no phenol protection and is tolerant to a variety of
other functional groups.

Several procedures have been reported for the C-methylation of phenols (Scheme 1). A
majority of these reports use the reduction of benzylic alcohols [4], aldehydes [5], benzonitriles
[6], and Mannich bases [7] to produce the desired methyl groups. These procedures are limited
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to phenols without competing reducible functionality. Directed ortho metalation has also been
utilized for the C-methylation of phenols [8]. Phenols with base sensitive functionality are
precluded from use under these conditions. Macdonald and coworkers have reported a
procedure for the direct ortho methylation of unprotected phenols using a modified Simmons-
Smith reagent [9]. They found this procedure to be incompatible with electron deficient
substrates. Metal oxide catalyzed reactions of phenols and methanol under high temperature
and pressure has also been reported to produce C-methylated products [10]. This method is
limited to relatively simple, volatile phenolic substrates.

Methylations have also been performed on protected phenolic substrates using a Stille [11] or
Negishi [12] coupling reaction. These approaches have proven to be more tolerant to a broad
array of functional groups. We report an extension of the co-catalytic, palladium-copper Stille
reaction [13] to convert various phenols including tyrosine, tyrosine analogs, and tyrosine
containing peptides to their corresponding C-methylated derivatives. This method has proven
effective in the presence of other redox active functional groups and without the need for
protection of the phenol.

Phenols 1a-f (Table 1) were converted to the desired methylated analogs by a two step
procedure (Scheme 2). The phenols were first iodinated using Barluenga’s reagent (IPy,BF,) to
afford triiodo- or diiodophenols 2a-f in excellent yields [14]. The iodophenols were converted
to the methylated derivatives 3a-f [17] via a co-catalytic, palladium-copper Stille reaction [13].
Entries 1 and 2 are examples of phenols carrying electron withdrawing, reducible functional
groups. Substrates 1la and 1b were cleanly iodinated and efficiently converted to the
corresponding trimethylphenols 3a and 3b in 81% and 88% overall yields, respectively. The C-
methylation of phthaloyl-protected tyramine 1c¢ (entry 3) showed no sign of competitive
iodination and was cleanly dimethylated to afford 3¢ in 76% overall yield. Phthaloyl-protected
octopamine 1d (entry 4) was efficiently iodinated and dimethylated with no evidence of 1,6-
elimination of the benzylic alcohol detected under the reaction conditions. This provided 3d in
87% overall yield. Protected tyrosine le (entry 5) was cleanly converted to the 3,5-dimethyl
analog 3e by the two step procedure in 73% overall yield. This approach simplifies access to
the known 3,5-dimethyltyrosine derivative [15].

To examine this two step methylation in the context of a peptide derivative, we chose Fmoc-
protected, truncated enkephalin If (entry 6). Both the iodination and methylation of 1f were
accomplished with no sign of side reactions to afford 3f in 75% overall yield. To our knowledge

this is the first example of a tyrosine C-methylation in a peptide.
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Table 1. Phenols, Jodinated Intermediates, and Methylated Products.
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“ BMTA ICl, was used for iodination [16].
® All products have been fully characterized [17].

A representative example of the palladium-copper, co-catalytic methylation of an iodophenol
is given by the conversion of 2d to 3d. Iodophenol 2d (500 mg, 934 umol) was added to a
high-pressure reaction tube containing N-methylpyrrolidinone (1.5 ml). Pd,dba;CHCl; (27 mg,
26 umol) and triphenylphosphine (50 mg, 191 umol) were added to the stirring solution and
gently heated to ~50 ‘C for 10 min. Copper(I) iodide (17 mg, 91 pmol) was added to the
stirring solution and again heated to ~50 "C for 10 min. After cooling to room temperature,

tetramethyl tin (285 pL, 2.06 mmol) was added neat to the stirring solution. The tube was
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sealed and heated to 65 "C overnight with stirring. Aqueous workup and ethy] acetate extraction
followed by drying (MgSO,) and concentration afforded the crude product. Flash
chromatography provided 3d (268 mg, 861 umol) in 92% yield [17].
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